mirror of
https://code.forgejo.org/actions/setup-node.git
synced 2025-05-22 14:04:44 +00:00
.
This commit is contained in:
parent
a004f0ae58
commit
fc725ba36b
7280 changed files with 19 additions and 1796407 deletions
40
node_modules/ecc-jsbn/lib/LICENSE-jsbn
generated
vendored
40
node_modules/ecc-jsbn/lib/LICENSE-jsbn
generated
vendored
|
@ -1,40 +0,0 @@
|
|||
Licensing
|
||||
---------
|
||||
|
||||
This software is covered under the following copyright:
|
||||
|
||||
/*
|
||||
* Copyright (c) 2003-2005 Tom Wu
|
||||
* All Rights Reserved.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
|
||||
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
|
||||
*
|
||||
* IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
|
||||
* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
|
||||
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
|
||||
* THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
|
||||
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*
|
||||
* In addition, the following condition applies:
|
||||
*
|
||||
* All redistributions must retain an intact copy of this copyright notice
|
||||
* and disclaimer.
|
||||
*/
|
||||
|
||||
Address all questions regarding this license to:
|
||||
|
||||
Tom Wu
|
||||
tjw@cs.Stanford.EDU
|
561
node_modules/ecc-jsbn/lib/ec.js
generated
vendored
561
node_modules/ecc-jsbn/lib/ec.js
generated
vendored
|
@ -1,561 +0,0 @@
|
|||
// Basic Javascript Elliptic Curve implementation
|
||||
// Ported loosely from BouncyCastle's Java EC code
|
||||
// Only Fp curves implemented for now
|
||||
|
||||
// Requires jsbn.js and jsbn2.js
|
||||
var BigInteger = require('jsbn').BigInteger
|
||||
var Barrett = BigInteger.prototype.Barrett
|
||||
|
||||
// ----------------
|
||||
// ECFieldElementFp
|
||||
|
||||
// constructor
|
||||
function ECFieldElementFp(q,x) {
|
||||
this.x = x;
|
||||
// TODO if(x.compareTo(q) >= 0) error
|
||||
this.q = q;
|
||||
}
|
||||
|
||||
function feFpEquals(other) {
|
||||
if(other == this) return true;
|
||||
return (this.q.equals(other.q) && this.x.equals(other.x));
|
||||
}
|
||||
|
||||
function feFpToBigInteger() {
|
||||
return this.x;
|
||||
}
|
||||
|
||||
function feFpNegate() {
|
||||
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q));
|
||||
}
|
||||
|
||||
function feFpAdd(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q));
|
||||
}
|
||||
|
||||
function feFpSubtract(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q));
|
||||
}
|
||||
|
||||
function feFpMultiply(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q));
|
||||
}
|
||||
|
||||
function feFpSquare() {
|
||||
return new ECFieldElementFp(this.q, this.x.square().mod(this.q));
|
||||
}
|
||||
|
||||
function feFpDivide(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q));
|
||||
}
|
||||
|
||||
ECFieldElementFp.prototype.equals = feFpEquals;
|
||||
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger;
|
||||
ECFieldElementFp.prototype.negate = feFpNegate;
|
||||
ECFieldElementFp.prototype.add = feFpAdd;
|
||||
ECFieldElementFp.prototype.subtract = feFpSubtract;
|
||||
ECFieldElementFp.prototype.multiply = feFpMultiply;
|
||||
ECFieldElementFp.prototype.square = feFpSquare;
|
||||
ECFieldElementFp.prototype.divide = feFpDivide;
|
||||
|
||||
// ----------------
|
||||
// ECPointFp
|
||||
|
||||
// constructor
|
||||
function ECPointFp(curve,x,y,z) {
|
||||
this.curve = curve;
|
||||
this.x = x;
|
||||
this.y = y;
|
||||
// Projective coordinates: either zinv == null or z * zinv == 1
|
||||
// z and zinv are just BigIntegers, not fieldElements
|
||||
if(z == null) {
|
||||
this.z = BigInteger.ONE;
|
||||
}
|
||||
else {
|
||||
this.z = z;
|
||||
}
|
||||
this.zinv = null;
|
||||
//TODO: compression flag
|
||||
}
|
||||
|
||||
function pointFpGetX() {
|
||||
if(this.zinv == null) {
|
||||
this.zinv = this.z.modInverse(this.curve.q);
|
||||
}
|
||||
var r = this.x.toBigInteger().multiply(this.zinv);
|
||||
this.curve.reduce(r);
|
||||
return this.curve.fromBigInteger(r);
|
||||
}
|
||||
|
||||
function pointFpGetY() {
|
||||
if(this.zinv == null) {
|
||||
this.zinv = this.z.modInverse(this.curve.q);
|
||||
}
|
||||
var r = this.y.toBigInteger().multiply(this.zinv);
|
||||
this.curve.reduce(r);
|
||||
return this.curve.fromBigInteger(r);
|
||||
}
|
||||
|
||||
function pointFpEquals(other) {
|
||||
if(other == this) return true;
|
||||
if(this.isInfinity()) return other.isInfinity();
|
||||
if(other.isInfinity()) return this.isInfinity();
|
||||
var u, v;
|
||||
// u = Y2 * Z1 - Y1 * Z2
|
||||
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q);
|
||||
if(!u.equals(BigInteger.ZERO)) return false;
|
||||
// v = X2 * Z1 - X1 * Z2
|
||||
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q);
|
||||
return v.equals(BigInteger.ZERO);
|
||||
}
|
||||
|
||||
function pointFpIsInfinity() {
|
||||
if((this.x == null) && (this.y == null)) return true;
|
||||
return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO);
|
||||
}
|
||||
|
||||
function pointFpNegate() {
|
||||
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z);
|
||||
}
|
||||
|
||||
function pointFpAdd(b) {
|
||||
if(this.isInfinity()) return b;
|
||||
if(b.isInfinity()) return this;
|
||||
|
||||
// u = Y2 * Z1 - Y1 * Z2
|
||||
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q);
|
||||
// v = X2 * Z1 - X1 * Z2
|
||||
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q);
|
||||
|
||||
if(BigInteger.ZERO.equals(v)) {
|
||||
if(BigInteger.ZERO.equals(u)) {
|
||||
return this.twice(); // this == b, so double
|
||||
}
|
||||
return this.curve.getInfinity(); // this = -b, so infinity
|
||||
}
|
||||
|
||||
var THREE = new BigInteger("3");
|
||||
var x1 = this.x.toBigInteger();
|
||||
var y1 = this.y.toBigInteger();
|
||||
var x2 = b.x.toBigInteger();
|
||||
var y2 = b.y.toBigInteger();
|
||||
|
||||
var v2 = v.square();
|
||||
var v3 = v2.multiply(v);
|
||||
var x1v2 = x1.multiply(v2);
|
||||
var zu2 = u.square().multiply(this.z);
|
||||
|
||||
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
|
||||
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
|
||||
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
|
||||
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q);
|
||||
// z3 = v^3 * z1 * z2
|
||||
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
|
||||
|
||||
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
|
||||
}
|
||||
|
||||
function pointFpTwice() {
|
||||
if(this.isInfinity()) return this;
|
||||
if(this.y.toBigInteger().signum() == 0) return this.curve.getInfinity();
|
||||
|
||||
// TODO: optimized handling of constants
|
||||
var THREE = new BigInteger("3");
|
||||
var x1 = this.x.toBigInteger();
|
||||
var y1 = this.y.toBigInteger();
|
||||
|
||||
var y1z1 = y1.multiply(this.z);
|
||||
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
|
||||
var a = this.curve.a.toBigInteger();
|
||||
|
||||
// w = 3 * x1^2 + a * z1^2
|
||||
var w = x1.square().multiply(THREE);
|
||||
if(!BigInteger.ZERO.equals(a)) {
|
||||
w = w.add(this.z.square().multiply(a));
|
||||
}
|
||||
w = w.mod(this.curve.q);
|
||||
//this.curve.reduce(w);
|
||||
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
|
||||
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q);
|
||||
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
|
||||
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q);
|
||||
// z3 = 8 * (y1 * z1)^3
|
||||
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q);
|
||||
|
||||
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
|
||||
}
|
||||
|
||||
// Simple NAF (Non-Adjacent Form) multiplication algorithm
|
||||
// TODO: modularize the multiplication algorithm
|
||||
function pointFpMultiply(k) {
|
||||
if(this.isInfinity()) return this;
|
||||
if(k.signum() == 0) return this.curve.getInfinity();
|
||||
|
||||
var e = k;
|
||||
var h = e.multiply(new BigInteger("3"));
|
||||
|
||||
var neg = this.negate();
|
||||
var R = this;
|
||||
|
||||
var i;
|
||||
for(i = h.bitLength() - 2; i > 0; --i) {
|
||||
R = R.twice();
|
||||
|
||||
var hBit = h.testBit(i);
|
||||
var eBit = e.testBit(i);
|
||||
|
||||
if (hBit != eBit) {
|
||||
R = R.add(hBit ? this : neg);
|
||||
}
|
||||
}
|
||||
|
||||
return R;
|
||||
}
|
||||
|
||||
// Compute this*j + x*k (simultaneous multiplication)
|
||||
function pointFpMultiplyTwo(j,x,k) {
|
||||
var i;
|
||||
if(j.bitLength() > k.bitLength())
|
||||
i = j.bitLength() - 1;
|
||||
else
|
||||
i = k.bitLength() - 1;
|
||||
|
||||
var R = this.curve.getInfinity();
|
||||
var both = this.add(x);
|
||||
while(i >= 0) {
|
||||
R = R.twice();
|
||||
if(j.testBit(i)) {
|
||||
if(k.testBit(i)) {
|
||||
R = R.add(both);
|
||||
}
|
||||
else {
|
||||
R = R.add(this);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if(k.testBit(i)) {
|
||||
R = R.add(x);
|
||||
}
|
||||
}
|
||||
--i;
|
||||
}
|
||||
|
||||
return R;
|
||||
}
|
||||
|
||||
ECPointFp.prototype.getX = pointFpGetX;
|
||||
ECPointFp.prototype.getY = pointFpGetY;
|
||||
ECPointFp.prototype.equals = pointFpEquals;
|
||||
ECPointFp.prototype.isInfinity = pointFpIsInfinity;
|
||||
ECPointFp.prototype.negate = pointFpNegate;
|
||||
ECPointFp.prototype.add = pointFpAdd;
|
||||
ECPointFp.prototype.twice = pointFpTwice;
|
||||
ECPointFp.prototype.multiply = pointFpMultiply;
|
||||
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo;
|
||||
|
||||
// ----------------
|
||||
// ECCurveFp
|
||||
|
||||
// constructor
|
||||
function ECCurveFp(q,a,b) {
|
||||
this.q = q;
|
||||
this.a = this.fromBigInteger(a);
|
||||
this.b = this.fromBigInteger(b);
|
||||
this.infinity = new ECPointFp(this, null, null);
|
||||
this.reducer = new Barrett(this.q);
|
||||
}
|
||||
|
||||
function curveFpGetQ() {
|
||||
return this.q;
|
||||
}
|
||||
|
||||
function curveFpGetA() {
|
||||
return this.a;
|
||||
}
|
||||
|
||||
function curveFpGetB() {
|
||||
return this.b;
|
||||
}
|
||||
|
||||
function curveFpEquals(other) {
|
||||
if(other == this) return true;
|
||||
return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
|
||||
}
|
||||
|
||||
function curveFpGetInfinity() {
|
||||
return this.infinity;
|
||||
}
|
||||
|
||||
function curveFpFromBigInteger(x) {
|
||||
return new ECFieldElementFp(this.q, x);
|
||||
}
|
||||
|
||||
function curveReduce(x) {
|
||||
this.reducer.reduce(x);
|
||||
}
|
||||
|
||||
// for now, work with hex strings because they're easier in JS
|
||||
function curveFpDecodePointHex(s) {
|
||||
switch(parseInt(s.substr(0,2), 16)) { // first byte
|
||||
case 0:
|
||||
return this.infinity;
|
||||
case 2:
|
||||
case 3:
|
||||
// point compression not supported yet
|
||||
return null;
|
||||
case 4:
|
||||
case 6:
|
||||
case 7:
|
||||
var len = (s.length - 2) / 2;
|
||||
var xHex = s.substr(2, len);
|
||||
var yHex = s.substr(len+2, len);
|
||||
|
||||
return new ECPointFp(this,
|
||||
this.fromBigInteger(new BigInteger(xHex, 16)),
|
||||
this.fromBigInteger(new BigInteger(yHex, 16)));
|
||||
|
||||
default: // unsupported
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
function curveFpEncodePointHex(p) {
|
||||
if (p.isInfinity()) return "00";
|
||||
var xHex = p.getX().toBigInteger().toString(16);
|
||||
var yHex = p.getY().toBigInteger().toString(16);
|
||||
var oLen = this.getQ().toString(16).length;
|
||||
if ((oLen % 2) != 0) oLen++;
|
||||
while (xHex.length < oLen) {
|
||||
xHex = "0" + xHex;
|
||||
}
|
||||
while (yHex.length < oLen) {
|
||||
yHex = "0" + yHex;
|
||||
}
|
||||
return "04" + xHex + yHex;
|
||||
}
|
||||
|
||||
ECCurveFp.prototype.getQ = curveFpGetQ;
|
||||
ECCurveFp.prototype.getA = curveFpGetA;
|
||||
ECCurveFp.prototype.getB = curveFpGetB;
|
||||
ECCurveFp.prototype.equals = curveFpEquals;
|
||||
ECCurveFp.prototype.getInfinity = curveFpGetInfinity;
|
||||
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger;
|
||||
ECCurveFp.prototype.reduce = curveReduce;
|
||||
//ECCurveFp.prototype.decodePointHex = curveFpDecodePointHex;
|
||||
ECCurveFp.prototype.encodePointHex = curveFpEncodePointHex;
|
||||
|
||||
// from: https://github.com/kaielvin/jsbn-ec-point-compression
|
||||
ECCurveFp.prototype.decodePointHex = function(s)
|
||||
{
|
||||
var yIsEven;
|
||||
switch(parseInt(s.substr(0,2), 16)) { // first byte
|
||||
case 0:
|
||||
return this.infinity;
|
||||
case 2:
|
||||
yIsEven = false;
|
||||
case 3:
|
||||
if(yIsEven == undefined) yIsEven = true;
|
||||
var len = s.length - 2;
|
||||
var xHex = s.substr(2, len);
|
||||
var x = this.fromBigInteger(new BigInteger(xHex,16));
|
||||
var alpha = x.multiply(x.square().add(this.getA())).add(this.getB());
|
||||
var beta = alpha.sqrt();
|
||||
|
||||
if (beta == null) throw "Invalid point compression";
|
||||
|
||||
var betaValue = beta.toBigInteger();
|
||||
if (betaValue.testBit(0) != yIsEven)
|
||||
{
|
||||
// Use the other root
|
||||
beta = this.fromBigInteger(this.getQ().subtract(betaValue));
|
||||
}
|
||||
return new ECPointFp(this,x,beta);
|
||||
case 4:
|
||||
case 6:
|
||||
case 7:
|
||||
var len = (s.length - 2) / 2;
|
||||
var xHex = s.substr(2, len);
|
||||
var yHex = s.substr(len+2, len);
|
||||
|
||||
return new ECPointFp(this,
|
||||
this.fromBigInteger(new BigInteger(xHex, 16)),
|
||||
this.fromBigInteger(new BigInteger(yHex, 16)));
|
||||
|
||||
default: // unsupported
|
||||
return null;
|
||||
}
|
||||
}
|
||||
ECCurveFp.prototype.encodeCompressedPointHex = function(p)
|
||||
{
|
||||
if (p.isInfinity()) return "00";
|
||||
var xHex = p.getX().toBigInteger().toString(16);
|
||||
var oLen = this.getQ().toString(16).length;
|
||||
if ((oLen % 2) != 0) oLen++;
|
||||
while (xHex.length < oLen)
|
||||
xHex = "0" + xHex;
|
||||
var yPrefix;
|
||||
if(p.getY().toBigInteger().isEven()) yPrefix = "02";
|
||||
else yPrefix = "03";
|
||||
|
||||
return yPrefix + xHex;
|
||||
}
|
||||
|
||||
|
||||
ECFieldElementFp.prototype.getR = function()
|
||||
{
|
||||
if(this.r != undefined) return this.r;
|
||||
|
||||
this.r = null;
|
||||
var bitLength = this.q.bitLength();
|
||||
if (bitLength > 128)
|
||||
{
|
||||
var firstWord = this.q.shiftRight(bitLength - 64);
|
||||
if (firstWord.intValue() == -1)
|
||||
{
|
||||
this.r = BigInteger.ONE.shiftLeft(bitLength).subtract(this.q);
|
||||
}
|
||||
}
|
||||
return this.r;
|
||||
}
|
||||
ECFieldElementFp.prototype.modMult = function(x1,x2)
|
||||
{
|
||||
return this.modReduce(x1.multiply(x2));
|
||||
}
|
||||
ECFieldElementFp.prototype.modReduce = function(x)
|
||||
{
|
||||
if (this.getR() != null)
|
||||
{
|
||||
var qLen = q.bitLength();
|
||||
while (x.bitLength() > (qLen + 1))
|
||||
{
|
||||
var u = x.shiftRight(qLen);
|
||||
var v = x.subtract(u.shiftLeft(qLen));
|
||||
if (!this.getR().equals(BigInteger.ONE))
|
||||
{
|
||||
u = u.multiply(this.getR());
|
||||
}
|
||||
x = u.add(v);
|
||||
}
|
||||
while (x.compareTo(q) >= 0)
|
||||
{
|
||||
x = x.subtract(q);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
x = x.mod(q);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
ECFieldElementFp.prototype.sqrt = function()
|
||||
{
|
||||
if (!this.q.testBit(0)) throw "unsupported";
|
||||
|
||||
// p mod 4 == 3
|
||||
if (this.q.testBit(1))
|
||||
{
|
||||
var z = new ECFieldElementFp(this.q,this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE),this.q));
|
||||
return z.square().equals(this) ? z : null;
|
||||
}
|
||||
|
||||
// p mod 4 == 1
|
||||
var qMinusOne = this.q.subtract(BigInteger.ONE);
|
||||
|
||||
var legendreExponent = qMinusOne.shiftRight(1);
|
||||
if (!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE)))
|
||||
{
|
||||
return null;
|
||||
}
|
||||
|
||||
var u = qMinusOne.shiftRight(2);
|
||||
var k = u.shiftLeft(1).add(BigInteger.ONE);
|
||||
|
||||
var Q = this.x;
|
||||
var fourQ = modDouble(modDouble(Q));
|
||||
|
||||
var U, V;
|
||||
do
|
||||
{
|
||||
var P;
|
||||
do
|
||||
{
|
||||
P = new BigInteger(this.q.bitLength(), new SecureRandom());
|
||||
}
|
||||
while (P.compareTo(this.q) >= 0
|
||||
|| !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, this.q).equals(qMinusOne)));
|
||||
|
||||
var result = this.lucasSequence(P, Q, k);
|
||||
U = result[0];
|
||||
V = result[1];
|
||||
|
||||
if (this.modMult(V, V).equals(fourQ))
|
||||
{
|
||||
// Integer division by 2, mod q
|
||||
if (V.testBit(0))
|
||||
{
|
||||
V = V.add(q);
|
||||
}
|
||||
|
||||
V = V.shiftRight(1);
|
||||
|
||||
return new ECFieldElementFp(q,V);
|
||||
}
|
||||
}
|
||||
while (U.equals(BigInteger.ONE) || U.equals(qMinusOne));
|
||||
|
||||
return null;
|
||||
}
|
||||
ECFieldElementFp.prototype.lucasSequence = function(P,Q,k)
|
||||
{
|
||||
var n = k.bitLength();
|
||||
var s = k.getLowestSetBit();
|
||||
|
||||
var Uh = BigInteger.ONE;
|
||||
var Vl = BigInteger.TWO;
|
||||
var Vh = P;
|
||||
var Ql = BigInteger.ONE;
|
||||
var Qh = BigInteger.ONE;
|
||||
|
||||
for (var j = n - 1; j >= s + 1; --j)
|
||||
{
|
||||
Ql = this.modMult(Ql, Qh);
|
||||
|
||||
if (k.testBit(j))
|
||||
{
|
||||
Qh = this.modMult(Ql, Q);
|
||||
Uh = this.modMult(Uh, Vh);
|
||||
Vl = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql)));
|
||||
Vh = this.modReduce(Vh.multiply(Vh).subtract(Qh.shiftLeft(1)));
|
||||
}
|
||||
else
|
||||
{
|
||||
Qh = Ql;
|
||||
Uh = this.modReduce(Uh.multiply(Vl).subtract(Ql));
|
||||
Vh = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql)));
|
||||
Vl = this.modReduce(Vl.multiply(Vl).subtract(Ql.shiftLeft(1)));
|
||||
}
|
||||
}
|
||||
|
||||
Ql = this.modMult(Ql, Qh);
|
||||
Qh = this.modMult(Ql, Q);
|
||||
Uh = this.modReduce(Uh.multiply(Vl).subtract(Ql));
|
||||
Vl = this.modReduce(Vh.multiply(Vl).subtract(P.multiply(Ql)));
|
||||
Ql = this.modMult(Ql, Qh);
|
||||
|
||||
for (var j = 1; j <= s; ++j)
|
||||
{
|
||||
Uh = this.modMult(Uh, Vl);
|
||||
Vl = this.modReduce(Vl.multiply(Vl).subtract(Ql.shiftLeft(1)));
|
||||
Ql = this.modMult(Ql, Ql);
|
||||
}
|
||||
|
||||
return [ Uh, Vl ];
|
||||
}
|
||||
|
||||
var exports = {
|
||||
ECCurveFp: ECCurveFp,
|
||||
ECPointFp: ECPointFp,
|
||||
ECFieldElementFp: ECFieldElementFp
|
||||
}
|
||||
|
||||
module.exports = exports
|
170
node_modules/ecc-jsbn/lib/sec.js
generated
vendored
170
node_modules/ecc-jsbn/lib/sec.js
generated
vendored
|
@ -1,170 +0,0 @@
|
|||
// Named EC curves
|
||||
|
||||
// Requires ec.js, jsbn.js, and jsbn2.js
|
||||
var BigInteger = require('jsbn').BigInteger
|
||||
var ECCurveFp = require('./ec.js').ECCurveFp
|
||||
|
||||
|
||||
// ----------------
|
||||
// X9ECParameters
|
||||
|
||||
// constructor
|
||||
function X9ECParameters(curve,g,n,h) {
|
||||
this.curve = curve;
|
||||
this.g = g;
|
||||
this.n = n;
|
||||
this.h = h;
|
||||
}
|
||||
|
||||
function x9getCurve() {
|
||||
return this.curve;
|
||||
}
|
||||
|
||||
function x9getG() {
|
||||
return this.g;
|
||||
}
|
||||
|
||||
function x9getN() {
|
||||
return this.n;
|
||||
}
|
||||
|
||||
function x9getH() {
|
||||
return this.h;
|
||||
}
|
||||
|
||||
X9ECParameters.prototype.getCurve = x9getCurve;
|
||||
X9ECParameters.prototype.getG = x9getG;
|
||||
X9ECParameters.prototype.getN = x9getN;
|
||||
X9ECParameters.prototype.getH = x9getH;
|
||||
|
||||
// ----------------
|
||||
// SECNamedCurves
|
||||
|
||||
function fromHex(s) { return new BigInteger(s, 16); }
|
||||
|
||||
function secp128r1() {
|
||||
// p = 2^128 - 2^97 - 1
|
||||
var p = fromHex("FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF");
|
||||
var a = fromHex("FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFC");
|
||||
var b = fromHex("E87579C11079F43DD824993C2CEE5ED3");
|
||||
//byte[] S = Hex.decode("000E0D4D696E6768756151750CC03A4473D03679");
|
||||
var n = fromHex("FFFFFFFE0000000075A30D1B9038A115");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "161FF7528B899B2D0C28607CA52C5B86"
|
||||
+ "CF5AC8395BAFEB13C02DA292DDED7A83");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp160k1() {
|
||||
// p = 2^160 - 2^32 - 2^14 - 2^12 - 2^9 - 2^8 - 2^7 - 2^3 - 2^2 - 1
|
||||
var p = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73");
|
||||
var a = BigInteger.ZERO;
|
||||
var b = fromHex("7");
|
||||
//byte[] S = null;
|
||||
var n = fromHex("0100000000000000000001B8FA16DFAB9ACA16B6B3");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "3B4C382CE37AA192A4019E763036F4F5DD4D7EBB"
|
||||
+ "938CF935318FDCED6BC28286531733C3F03C4FEE");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp160r1() {
|
||||
// p = 2^160 - 2^31 - 1
|
||||
var p = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF");
|
||||
var a = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFC");
|
||||
var b = fromHex("1C97BEFC54BD7A8B65ACF89F81D4D4ADC565FA45");
|
||||
//byte[] S = Hex.decode("1053CDE42C14D696E67687561517533BF3F83345");
|
||||
var n = fromHex("0100000000000000000001F4C8F927AED3CA752257");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "4A96B5688EF573284664698968C38BB913CBFC82"
|
||||
+ "23A628553168947D59DCC912042351377AC5FB32");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp192k1() {
|
||||
// p = 2^192 - 2^32 - 2^12 - 2^8 - 2^7 - 2^6 - 2^3 - 1
|
||||
var p = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37");
|
||||
var a = BigInteger.ZERO;
|
||||
var b = fromHex("3");
|
||||
//byte[] S = null;
|
||||
var n = fromHex("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D"
|
||||
+ "9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp192r1() {
|
||||
// p = 2^192 - 2^64 - 1
|
||||
var p = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF");
|
||||
var a = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC");
|
||||
var b = fromHex("64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1");
|
||||
//byte[] S = Hex.decode("3045AE6FC8422F64ED579528D38120EAE12196D5");
|
||||
var n = fromHex("FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012"
|
||||
+ "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp224r1() {
|
||||
// p = 2^224 - 2^96 + 1
|
||||
var p = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001");
|
||||
var a = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE");
|
||||
var b = fromHex("B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4");
|
||||
//byte[] S = Hex.decode("BD71344799D5C7FCDC45B59FA3B9AB8F6A948BC5");
|
||||
var n = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21"
|
||||
+ "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp256r1() {
|
||||
// p = 2^224 (2^32 - 1) + 2^192 + 2^96 - 1
|
||||
var p = fromHex("FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF");
|
||||
var a = fromHex("FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC");
|
||||
var b = fromHex("5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B");
|
||||
//byte[] S = Hex.decode("C49D360886E704936A6678E1139D26B7819F7E90");
|
||||
var n = fromHex("FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296"
|
||||
+ "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
// TODO: make this into a proper hashtable
|
||||
function getSECCurveByName(name) {
|
||||
if(name == "secp128r1") return secp128r1();
|
||||
if(name == "secp160k1") return secp160k1();
|
||||
if(name == "secp160r1") return secp160r1();
|
||||
if(name == "secp192k1") return secp192k1();
|
||||
if(name == "secp192r1") return secp192r1();
|
||||
if(name == "secp224r1") return secp224r1();
|
||||
if(name == "secp256r1") return secp256r1();
|
||||
return null;
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
"secp128r1":secp128r1,
|
||||
"secp160k1":secp160k1,
|
||||
"secp160r1":secp160r1,
|
||||
"secp192k1":secp192k1,
|
||||
"secp192r1":secp192r1,
|
||||
"secp224r1":secp224r1,
|
||||
"secp256r1":secp256r1
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue